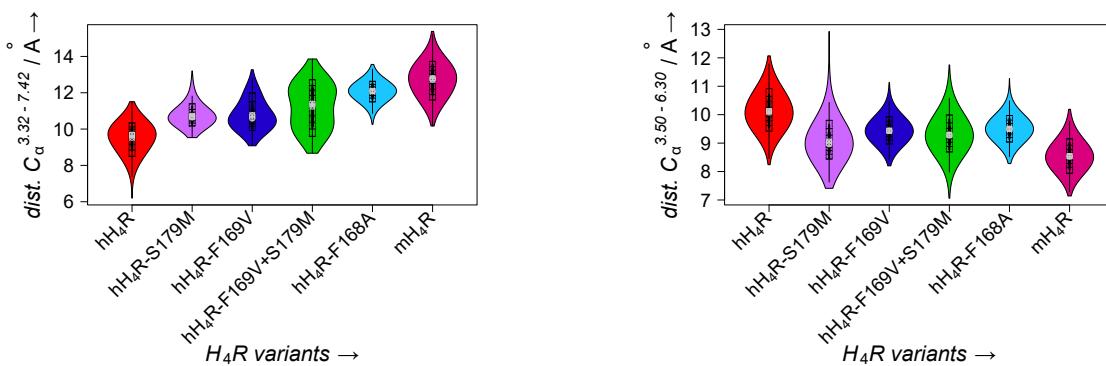


Constitutive activity of the human histamine H₄ receptor: Computational studies on wild-type and mutant H₄R orthologs

David Wifling¹, Jonas Kaindl², Ralf C. Kling², Armin Buschauer¹, and Timothy Clark²

¹Institute of Pharmacy, Univ. Regensburg, D-93040 Regensburg


²Computer-Chemie-Centrum, Univ. Erlangen-Nürnberg, D-91052 Erlangen

Histamine H₄ receptor (H₄R) orthologs are G-protein coupled receptors (GPCRs) that exhibit species-dependent constitutive (basal) activity: In contrast to mouse H₄R (mH₄R), human H₄R (hH₄R) shows a high degree of constitutive activity.

In a previous molecular-pharmacological study, we characterized the constitutive activity of hH₄R, mH₄R as well as a series of hH₄R mutants, comprising hH₄R-S179M, hH₄R-F169V, hH₄R-F169V+S179M [1] and hH₄R-F168A [2]. An exchange of F169^{ECL2} to V significantly decreased the constitutive activity compared to wild-type hH₄R, while that of the hH₄R-S179M mutant is similar to that of hH₄R. [1] Remarkably, the basal activity of the hH₄R-F169V+S179M [1] and hH₄R-F168A [2] mutants is even comparable to that of mH₄R.

Hence, though we identified residues that account for the high constitutive activity of the hH₄R, the underlying molecular mechanism by which the basal equilibrium between inactive and active receptor states is shifted towards the inactive state is still unknown. To shed light on this matter, we have performed long-time-scale (2 μ s) molecular-dynamics simulations on wild-type hH₄R, the hH₄R mutants S179M, F169V, F169V+S179M, F168A, and on mH₄R.

During the MD simulations, F169^{ECL2} is dipping into the binding pocket merely in case of hH₄R and is thereby interacting with the surrounding aromatic and hydrophobic residues. Interestingly, F169 seems to take the role of an agonist, thus contributing to the stabilization of the active state. As a measure of binding pocket contraction, the distance (C_{α}) between D94^{3.32} and Q347^{7.42}, starting at approximately 11 Å, increased by a maximum of ~3 Å for the hH₄R mutants and mH₄R, while, by contrast, it decreased by up to 3 Å for the basally active hH₄R. At the intracellular side, initial C_{α} - C_{α} distances of around 8.0 Å between R112^{3.50} and A298^{6.30} increased more for hH₄R than for the hH₄R mutants and mH₄R, thus showing an enhanced outward movement of TM6 for hH₄R compared to the other H₄R variants. This is in accordance with the fact that GPCR activation is reflected by a subtle contraction of the orthosteric binding pocket and a notable outward motion of TM6 at the intracellular side.

Hence, H₄R variant-dependent differences between essential motifs of GPCR activation correlate with experimentally determined constitutive activities and provide a molecular explanation for the differences in constitutive activation. Furthermore, the results shed new light on the molecular mechanism of basal H₄R activation that are of importance for other GPCRs.

[1] D. Wifling, et al., *Br. J. Pharmacol.*, **2015**, 172, 785-798.

[2] D. Wifling, et al., *PLoS One*, **2015**, 10, e0117185.