


Prediction of first-order nonlinear optical properties of Anderson polyoxometalate derivatives

Meriem ALMI,¹ Amar SAAL,^{1,2} Ourida OUAMERALI¹

¹*Laboratoire de Chimie Théorique Computationnelle et Photonique, USTHB, Alger, Algérie.*

²*Département de Chimie, UMMTO, 15000, Tizi-Ouzou, Algérie.*

Polyoxometalates (POMs) are metal-oxygen oxo-clusters with a large variety of sizes and shapes. The most known POMs types are: Wells-Dawson, Keggin, Anderson, and Lindkvist types. They are largely studied for their application in different fields such as: catalysis, materials science, and medicine.

Figure. Ball and sticks representation of Anderson structure and its derivatives

POMs have been largely investigated for their chemical and physical properties: redox, photovoltaic applications, chemical reactivity, nonlinear optical properties ... etc. In order to establish the structure-property relationship, we proposed in this work to study a set of Anderson cluster's derivatives $[X\text{-C}(\text{CH}_2\text{O})_3\text{CrMo}_6(\text{OH})_3\text{O}_{18}]^{3-}$ ($X = \text{NO}_2, \text{NH}_2, \text{ and } \text{CH}_3$) and substituted Polyoxometalates $[\text{CrMo}_6\text{O}_{24}]^{3-}$. The first-order hyperpolarizabilities, the partial density of states PDOS, and the electronic spectrum of those clusters have been evaluated using the density functional theory (DFT) and the time-dependent DFT (TD-DFT) methods.